J. Jansen Euclides 96/2, 30-32 Hoe zou je deze integraal berekenen: [latex]I=\int \limits_{0}^{\frac{\pi}{2}} \frac{\sin{x}}{\sin{x}+\cos{x}}\mathrm{d}x?[/latex] Je kunt de grafische rekenmachine inschakelen. Je vindt 0,7853982 (figuur 1), wat je misschien herkent als (een benadering van) [latex]\frac{\pi}{4}[/latex]. [caption id="attachment_27726" align="aligncenter" width="314"] Figuur 1 Met de grafische rekenmachine[/caption] Om waterdicht te bewijzen dat de integraal exact gelijk is aan [latex]\frac{\pi}{4}[/latex], ga je op zoek naar een primitieve functie. Partiële integratie lijkt hier geen goed idee en een geschikte substitutie ligt niet voor het grijpen. Je kunt de grote middelen inschakelen: alles uitdrukken in [latex]t=\tan{\frac{x}{2}}[/latex]. Met deze t-formules kun je deze integraal omzetten in…
Alle details over onze abonnementsformules vind je op de 'Abonnementen'-pagina.