Symmetrische patronen kom je tegen in de natuur, in het straatbeeld en in de kunst. Maar symmetrie is ook een sleutelbegrip in de wiskunde en de natuurwetenschappen. Het is de moeite waard om in de wiskundelessen meer aandacht te besteden aan symmetrische figuren en symmetriegroepen. In deze loep zetten we de stap van transformaties naar symmetriegroepen. We laten zien hoe leerlingen van de derde graad de symmetriegroepen van rozetten en strookpatronen (friezen) kunnen ontdekken. Aan de hand van opdrachten bewijzen ze dat er juist zeven groepen van strookpatronen mogelijk zijn. Sommige activiteiten en opdrachten uit deze loep kunnen ook in de eerste en de tweede graad ingelast worden.