Modernisering SO

Wiskundeplan. Een leerplan voor en door wiskundeleerkrachten.

www.wiskundeplan.be Op dinsdag 22 mei 2023 verscheen in het nieuws dat enkele wiskundeleraren uitpakken met eigen leerplannen wiskunde. Dat leraren hun eigen leerplan schrijven, is uitzonderlijk. Meestal maken de koepels nieuwe leerplannen en gebruiken scholen die. Nu namen dus enkele leraren het heft in eigen handen. Ze schreven een leerplan voor vijf uur wiskunde in

[ Lees meer ]

Statistiek in de derde graad humane wetenschappen

In o.a. de studierichting humane wetenschap komt er meer aandacht voor statistiek. Dit moet deze leerlingen beter voorbereiden op vervolgstudies zoals psychologie, pedagogie of sociologie. We brengen het toetsen van hypothesen eerst informeel aan en pas daarna gaan we in op het kansmodel van de binomiale verdeling en de betrouwbaarheidsintervallen. De nadruk ligt eerder op interpretatie en inzicht dan op wiskundige formules. We eindigen met het verslag van een vakoverschrijdend project.

[ Lees meer ]

Basisgeletterdheid wiskunde in de eerste graad A- en B-stroom

De hervorming van het secundair onderwijs in de eerste graad bracht, naast nieuwe eindtermen voor de A- en de B-stroom, ook eindtermen basisgeletterdheid voor wiskunde, Nederlands, digitale competenties en financiële geletterdheid met zich mee. Basisgeletterdheid omvat een aantal essentiële doelen die je nodig hebt om als geletterde en gecijferde burger aan de maatschappij te kunnen participeren. In deze loep verdiepen we ons in de wiskundige inhoud van deze eindtermen basisgeletterdheid. We reiken haalbare ideeën aan om zinvol en met de nodige diepgang met deze doelen in de klas om te gaan. We geven een omschrijving van gecijferdheid, we kijken naar een aantal evoluties die de invoering van de eindtermen basisgeletterdheid wiskunde verklaren. Daarna onderzoeken we hoe die eindtermen exact zijn opgesteld en op welke manier ze geïntegreerd kunnen worden in de reguliere (wiskunde)lessen. We sluiten af met een hoofdstuk over het evalueren van de basisgeletterdheid.

[ Lees meer ]

Groepen in de derde graad

Een groep is een algebraïsche structuur, een abstract patroon dat je terugvindt bij meetkundige transformaties, getallen, matrices, veeltermen… en dat een sleutelbegrip vormt in de hogere wiskunde, de fysica en de cryptografie. Overal waar het gaat over een invariant, iets dat behouden blijft wanneer iets verandert, zit daar een groep achter. Leerlingen van de derde graad in richtingen met ‘gevorderde wiskunde’ zullen daar in de nabije toekomst mee kennis maken. We brengen groepen en cayleytabellen aan vanuit twee contexten: de symmetrie van vlakke figurenen en het modulorekenen. Groepen in verschillende contexten zijn soms ‘hetzelfde’ en dit motiveert het werken in een abstracte groep. Na enkele abstracte bewijsjes en de studie van voorbeelden en tegenvoorbeelden, keren we terug naar de symmetrie maar dan in de ruimte. Het ‘slim tellen’ van symmetrieën van veelvlakken leidt tot de stelling van Lagrange over deelgroepen en nevenklassen.

[ Lees meer ]

Een klein beetje grafentheorie, een sterk gevolg: het lemma van Sperner

Het lemma van Sperner is een resultaat dat de kracht van de grafentheorie als didactisch onderwerp opnieuw laat zien: met minimale kennis van grafen leid je een bewijs af met een diep resultaat. Het lemma kan bewezen worden met sterkere leerlingen in de 2[latex]^\text{e}[/latex] of 3[latex]^\text{e}[/latex] graad, die niet terugdeinzen voor een streepje abstractie. Het lemma is de discrete variant van de stelling van Brouwer en legt zo een link tussen continue en discrete wiskunde. Een graaf [latex]G=(V,E)[/latex] bestaat uit twee eindige verzamelingen [latex]V[/latex] en [latex]E[/latex]. De elementen van [latex]V[/latex] worden knopen genoemd, en die van [latex]E[/latex] bogen. Elke boog…

[ Lees meer ]

Instappen voor grafentheorie

1. Inleiding De nieuwe eindtermen voor de tweede graad gingen in op 1 september 2021. Daarin werd ook een deeltje grafentheorie opgenomen voor de doorstroomfinaliteit. Er werd wel gestipuleerd dat dit onderwerp gerealiseerd dient te worden met een context. In dit spinnenwebartikel bespreek ik daarom twee contexten om grafentheorie te behandelen, die ook werken voor leerlingen

[ Lees meer ]

bOOleO, een spel rond logische poorten voor de tweede graad

De nieuwe eindterm rond propositielogica in de 2 graad bevat de koppeling met de logische poorten. In de loep Logica in de tweede graad (UW 37/3) deden we al uit de doeken hoe je die eindterm kleur kunt geven in je klaspraktijk. Na wat grasduinen in de literatuur, kwam ik het Amerikaanse kaartspel bOOleO tegen.

[ Lees meer ]

Spreidingsdiagrammen en trendlijnen in de 2e graad

Een nieuwe eindterm voor de tweede graad doorstroomfinaliteit gaat over het grafisch voorstellen van bivariate statistische gegevens onder de vorm van een spreidingsdiagram en het beschrijven van het verband tussen de twee variabelen met behulp van een trendlijn. In deze loep laten we zien hoe je deze leerinhouden in de klas kunt behandelen. Het is een onderwerp dat op de grens zit tussen statistiek en functieleer en het vormt een uitstekende gelegenheid om in te gaan op het gebruik van functies als wiskundig model voor fenomenen uit de realiteit. We leggen expliciet de band met het gebruik van spreidingsdiagrammen en trendlijnen in wetenschapsvakken en in de media. We gaan ook in op de vaak voorkomende misvatting dat samenhang tussen twee variabelen automatisch een oorzakelijk verband met zich mee zou brengen.

[ Lees meer ]

Lineair programmeren

Optimalisatieproblemen oplossen met behulp van lineaire programmering, is een nieuwe eindterm. Het is een onderdeel van operationeel onderzoek, typische wiskunde van de handelsingenieur. Een interessant aspect van lineaire programmering is de combinatie van het visuele (het werken op de grafiek) en het algebraïsche. Wat je doet met de ongelijkheden en de winst- of kostenfunctie, of wat je in de matrices doet bij de simplexmethode, kun je grafisch interpreteren en de inspiratie voor wat je algebraïsch doet komt van het grafische. Dat over en weer gaan leidt tot inzicht. Bovendien geeft het een inkijk in enkele echte toepassingen van ongelijkheden. Deze combinatie van het visuele en het algebraïsche vormt de rode draad doorheen deze loep. Bij het grafisch oplossen voorzien we enkele uitbreidingsoefeningen, waarin gebruik gemaakt wordt van parameters.

[ Lees meer ]

Wordt Vlaanderen minder laaggecijferd door de basisgeletterdheid wiskunde?

We schrijven 1988 wanneer de Amerikaanse wiskundige John Allen Paulos zijn boek ‘Innumeracy, mathematical illiteracy and its consequences’ op de wereld loslaat. In het boek betoogt Paulos dat ongecijferdheid een groot probleem vormt voor een veel te groot aantal mensen bij wie het verder niet aan gezond verstand ontbreekt. Voorbeelden zoals mensen die uit het

[ Lees meer ]