Spinnenweb

In het spinnenweb verzamelen we allerlei korte bijdragen: een vraag over de aanbreng van een bepaald stuk leerstof, een kort verslag van een uitgeprobeerde les, een leuk idee om de leerlingen te boeien... Alle vragen, bijdragen en suggesties worden verwacht bij de redactie.

Een monument voor een monumentaal getal: π

Vele Vlaamse scholen maken op de -dag tijd voor een wiskundige activiteit waarin ze meerdere klassen en meerdere vakken betrekken. De viering van het getal  op 14 maart komt overgewaaid uit Amerika. De Amerikaanse schrijfwijze van de datum met de maand voor de dag (3/14) doet denken aan de decimale benadering (3,14) van , nauwkeurig

[ Lees meer ]

Vergeten begrippen (2): onderling onmeetbaar

De meetkundige begrippen ‘onmeetbaar’ en ‘onderling onmeetbaar’ verhouden zich tot elkaar als de meer bekende rekenkundige begrippen ‘ondeelbaar’ en ‘onderling ondeelbaar’. Twee getallen die ‘onderling ondeelbaar’ zijn hoeven niet ‘ondeelbaar’ (of priem) te zijn. Ze mogen alleen geen gemeenschappelijke deler hebben buiten 1. Zo zijn de getallen 33 en 35 onderling ondeelbaar. Maar individueel zijn ze wel deelbaar: 35 door 5 en 7 en 33 door 3 en 11. Op een gelijkaardige manier kijken we naar ‘onderling onmeetbare’ lijnstukken. Individueel zijn ze wel meetbaar met een eindig latje. Maar ze zijn niet meetbaar met hetzelfde latje. Zijn dan niet alle…

[ Lees meer ]

Vergeten begrippen (1): oblate en prolate ellipsoïden

In de supermarkt die ik wekelijks frequenteer, maakt men de laatste tijd reclame voor ‘vergeten groenten’, groenten die mijn grootvader met noeste arbeid uit de grond haalde, groenten die mijn grootmoeder kundig gaarde volgens een klassiek recept uit het kookboek van de KVLV. De minst vergeten van al deze vergeten groenten zijn de pastinaak, de koolrabi en de snijbiet (of warmoes). Ik koop ze geregeld, niet alleen uit nostalgie maar ook een beetje uit angst dat ze verloren zullen gaan. Gewist uit het collectieve geheugen. Niet meer proefbaar voor mijn kinderen en mogelijke kleinkinderen. Ook in de wiskunde bekruipt me…

[ Lees meer ]

Tweedegraadsvergelijkingen bij Lagrange

Dit artikel bevat materiaal voor een lessenreeks waarin leerlingen van de laatste jaren van het secundair onderwijs kennis maken met een stukje historische wiskunde. De lessenreeks kadert in een 'humanistische' visie op wiskunde, als mensenwerk in de loop van de geschiedenis. We brengen de leerlingen rechtstreeks in contact met een originele tekst van de Italiaans-Franse wiskundige Joseph-Louis Lagrange: "Additions au Mémoire sur la résolution des équations numériques". Door de confrontatie met deze historische tekst leren de leerlingen technieken die in de traditionele curricula zelden voorkomen. Bovendien scherpen ze hun wiskundige competenties aan door over alle tussenstappen na te denken.

[ Lees meer ]

Heron herbekeken

Na het lezen van het leuke artikel van Koen De Naeghel over de formule van Heron, in Uitwiskeling 34/1, vielen er wat mij betreft een aantal puzzelstukken op hun plaats. Hier vind je het resultaat. In bijna elk handboek wiskunde van het vijfde jaar staat de volgende oefening. Bewijs dat de volgende gelijkheid geldt in een willekeurige driehoek met hoeken [latex]\alpha, \beta [/latex] en [latex]\gamma [/latex]: [latex]\tan \alpha + \tan \beta + \tan \gamma =\tan \alpha \cdot \tan \beta \cdot \tan \gamma[/latex] Dit is een mooie oefening op vooral de som- en verschilformules van sinus en cosinus. We bewijzen ze…

[ Lees meer ]

Wakker geschud door de l’Hospital

Rekenregels vervallen soms na een tijdje in automatismen. Dat heeft zijn voordelen; je ontlast er je (werk)geheugen mee en je moet niet meer over alles nadenken. Maar juist in dat laatste schuilt een gevaar. We vergeten dan wel eens de voorwaarden van de stelling (de zogenaamde “kleine lettertjes”) na te gaan. En dan kan het fout lopen. Het is zinvol om de leerlingen te laten nadenken over dergelijke “tegenvoorbeelden” (zie Mason, 2009). Op die manier krijgen ze meer feeling voor de correcte formuleringen van stellingen. We illustreren dit met de berekening van [latex] \lim_{x\to\infty} \frac{6x+\sin x}{2x+\sin x}. [/latex] Zowel de…

[ Lees meer ]

Het draaiend stokje

Ben je het filmpje ‘Straight pole, curved hole’ ook tegengekomen? Een stokje draait rond een as en passeert bij elke omwenteling door een gleuf (figuur 1). [caption id="attachment_7449" align="aligncenter" width="513"] Figuur 1 Beeld uit het filmpje Straight pole, curved hole[/caption] In onze lessen ruimtemeetkunde van de derde graad lijkt het vaak alsof de ruimte enkel be–woond wordt door punten, rechten, vlakken en bollen. Het lijkt me een goed idee om ook – heel eventjes maar – een ander oppervlak te bespre­ken. Een bijzonder boeiend oppervlak is de (een–bladige) hyperboloïde. Dit filmpje, of het hebbeding zelf, is een prima vertrekpunt om…

[ Lees meer ]

De formule van Heron

In dit artikel staat de formule van Heron centraal. Deze formule drukt de oppervlakte van een drie­hoek uit in functie van de lengten van de zijden. Naast het gebruikelijke schoolbewijs geven we drie alternatieve, minder bekende bewijzen. Daarbij gaan we een veralgemening tot de opper­vlakte van een willekeurige (niet-gekruiste) vier­hoek niet uit de weg. 1.

[ Lees meer ]