V. Blåsjö, How to find the logarithm of any number using nothing but a piece of string19novV. Blåsjö, How to find the logarithm of any number using nothing but a piece of string Michel Ballieu, La preuve par neuf… Quelques étapes de son histoire19nov Michel Ballieu, La preuve par neuf… Quelques étapes de son histoireVergeten begrippen (3): omwindende en omwondene19novVergeten begrippen (3): omwindende en omwondeneFamous Inequality Worth Knowing: RMS-AM-GM-HM Inequality19novFamous Inequality Worth Knowing: RMS-AM-GM-HM Inequality D. Huylebrouck, Wiskunst18nov D. Huylebrouck, WiskunstSpiegelen in Italië18novSpiegelen in Italië Infonamiddag Eindtermen Wiskunde – woensdag 19 september24jul Infonamiddag Eindtermen Wiskunde – woensdag 19 septemberWiskundeprojecten in fysische contexten18junWiskundeprojecten in fysische contextenG. Sanderson, Why is pi here? And why is it squared? A geometric answer to the Basel Problem17junG. Sanderson, Why is pi here? And why is it squared? A geometric answer to the Basel Problem 1 2 3 … 24 25 26 27 28 29 30 … 134 135 136
V. Blåsjö, How to find the logarithm of any number using nothing but a piece of string19novV. Blåsjö, How to find the logarithm of any number using nothing but a piece of string
Michel Ballieu, La preuve par neuf… Quelques étapes de son histoire19nov Michel Ballieu, La preuve par neuf… Quelques étapes de son histoire
Famous Inequality Worth Knowing: RMS-AM-GM-HM Inequality19novFamous Inequality Worth Knowing: RMS-AM-GM-HM Inequality
Infonamiddag Eindtermen Wiskunde – woensdag 19 september24jul Infonamiddag Eindtermen Wiskunde – woensdag 19 september
G. Sanderson, Why is pi here? And why is it squared? A geometric answer to the Basel Problem17junG. Sanderson, Why is pi here? And why is it squared? A geometric answer to the Basel Problem