0

Groepen in de derde graad

Een groep is een algebraïsche structuur, een abstract patroon dat je terugvindt bij meetkundige transformaties, getallen, matrices, veeltermen… en dat een sleutelbegrip vormt in de hogere wiskunde, de fysica en de cryptografie. Overal waar het gaat over een invariant, iets dat behouden blijft wanneer iets verandert, zit daar een groep achter. Leerlingen van de derde graad in richtingen met ‘gevorderde wiskunde’ zullen daar in de nabije toekomst mee kennis maken. We brengen groepen en cayleytabellen aan vanuit twee contexten: de symmetrie van vlakke figurenen en het modulorekenen. Groepen in verschillende contexten zijn soms ‘hetzelfde’ en dit motiveert het werken in een abstracte groep. Na enkele abstracte bewijsjes en de studie van voorbeelden en tegenvoorbeelden, keren we terug naar de symmetrie maar dan in de ruimte. Het ‘slim tellen’ van symmetrieën van veelvlakken leidt tot de stelling van Lagrange over deelgroepen en nevenklassen.

[ Lees meer ]

Grootschalig toetsen

Begin juni volgde ik het Webinar over de resultaten van peilingsproeven voor wiskunde in het zesde leerjaar van het basisonderwijs. De resultaten waren niet goed. Maar dat was al langer zo. De vorige peiling (2016) was net zo goed zorgwekkend. Vanuit andere hoeken (PISA, Timms) krijgen we gelijkaardige geluiden te horen: het niveau voor wiskunde

[ Lees meer ]

Prijswinnaars bOOleO-spel

In het vorige nummer, UW38/2, werd er op het einde van het spinnenwebartikel ‘bOOleO, een spel rond logische poorten voor de tweede graad‘ 5 kaartspelen verloot, gedrukt door Die Keure. We ontvingen maar liefst 52 inzendingen. Excel trok er 5 namen uit. De winnaars zijn: Johannes Scheurs (GO! Atheneum De Ring, Leuven) Lieven Depoortere (Sportschool

[ Lees meer ]

Een opgave boeiend maken

In het redactioneel van UW 38/2 merkte Els Vanlommel op dat je met kleine ingrepen je lessen beter en efficiënter kunt maken. Het ging over ingrepen van didactische aard, zoals het stellen van herhalingsvraagjes en oefeningen uitstellen tot later. Soms kun je ook met kleine inhoudelijke ingrepen een ‘gewone’ opgave boeiender maken. Een tijdje geleden zag ik hier een mooi voorbeeld van in mijn ‘didactisch atelier’ van de educatieve bacheloropleiding aan de UCLL in Diepenbeek. Een groepje van drie studenten, Sven, Zohri en Nik, gaven een les aan hun medestudenten, die leerling speelden. De les ging over het gebruik van…

[ Lees meer ]

Een klein beetje grafentheorie, een sterk gevolg: het lemma van Sperner

Het lemma van Sperner is een resultaat dat de kracht van de grafentheorie als didactisch onderwerp opnieuw laat zien: met minimale kennis van grafen leid je een bewijs af met een diep resultaat. Het lemma kan bewezen worden met sterkere leerlingen in de 2[latex]^\text{e}[/latex] of 3[latex]^\text{e}[/latex] graad, die niet terugdeinzen voor een streepje abstractie. Het lemma is de discrete variant van de stelling van Brouwer en legt zo een link tussen continue en discrete wiskunde. Een graaf [latex]G=(V,E)[/latex] bestaat uit twee eindige verzamelingen [latex]V[/latex] en [latex]E[/latex]. De elementen van [latex]V[/latex] worden knopen genoemd, en die van [latex]E[/latex] bogen. Elke boog…

[ Lees meer ]

Bewijzen met de driehoeksongelijkheid

De driehoeksongelijkheid is een heel eenvoudig principe. Er zijn twee redenen waarom ik deze ongelijkheid interessant vind. Er is geen specifieke voorkennis voor nodig en toch kun je hiermee oefenen in het ‘bewijzen’. Een beetje zoals bij de grafentheorie. Wanneer je andere soorten ‘afstanden’ (metrieken) wilt definiëren (bv. de taximetriek, zie Verhulst 2018), dan is

[ Lees meer ]

Klaar voor de GRexit

Met de zogenaamde digisprong krijgen in meer en meer scholen de leerlingen een laptop. Hierdoor gaat de grafische rekenmachine vaak naar de uitgang: de GR-exit. In deze loep bekijken we welke moeilijkheden en mogelijkheden hierdoor ontstaan. Wat met toetsen en examens? GeoGebra zal meer gebruikt worden: we geven enkele voorbeelden uit de klas. Ook het programmeren in Python krijgt een plaatsje in de wiskundeles. We laten zien hoe je dit in de tweede graad kunt aanbrengen. We eindigen ten slotte met een theoretisch kader over het doel van informatietechnologie en computers in het onderwijs.

[ Lees meer ]

Pythagoreïsche rijtjes en taxicabgetallen

Pythagoreïsche rijtjes Martin Kindt, Euclides 96-3 pp 22-25 Van taxicab-getallen en algebraïsche raaklijnen Rogier Bos, Euclides 97-5, pp 34-36 In het Nederlandse wiskundetijdschrift Euclides wordt er ook vaak uitgewiskeld en verschijnen er artikels die geschreven zijn naar aanleiding van eerdere artikels. In deze bijdrage bespreken we een artikel van Martin Kindt waarin die een manier uitlegt om Pythagoreïsche drietallen te genereren. Deze methode werd enkele nummers later door Rogier Bos benut voor de ontwikkeling van een formule voor taxicab-getallen. Pythagoreïsche drietallen zijn gehele getallen [latex]a[/latex], [latex]b[/latex] en [latex]c[/latex] waarvoor geldt dat [latex]a^2+b^2=c^2[/latex]. Het zijn dus gehele getallen die de zijden…

[ Lees meer ]

Algoritmen

Algoritmen voor computers? Een algoritme, dat is toch iets om mee te programmeren? Een systematisch recept met variabelen en iteraties, dat je moet vertalen naar een programmeertaal en dan te eten geven aan een computer? Nu computers aan terrein winnen, tot zelfs in de boekentasjes van de leerlingen toe, is het dan niet logisch dat

[ Lees meer ]