Inloggen

Uitwiskeling - Jaargang 29 - 2013

Verschenen nummers

Jaaroverzicht

De recente peiling wiskunde in de tweede graad aso toont minder goede resultaten voor algebra, vooral voor leerlingen die minder sterk zijn voor wiskunde. Problemen met algebra zijn niet nieuw en komen even goed elders in de wereld voor. Je kunt zeker niet alles oplossen met een betere didactiek, maar dat neemt niet weg dat er op dat vlak toch nog ruimte voor verbetering is. Uit wetenschappelijk onderzoek blijkt dat we niet uitsluitend mogen inzetten op het gedachteloos inoefenen van basisvaardigheden. We moeten integendeel aansturen op een goede combinatie van rekenvaardigheid en algebraïsch inzicht. In het verleden maakten we een loep over het inzichtelijk aanbrengen van leerstof. Nu illustreren we met heel veel voorbeelden uit (vooral) de eerste en tweede graad hoe je de leerstof kunt inoefenen terwijl je tegelijk blijft werken aan het opbouwen van inzicht. (pg. 15))

[ Lees meer ]
 

Sommige leerlingen hebben het moeilijk met wiskunde omdat ze struikelen over taal. Dit is een probleem van anderstalige leerlingen maar het komt ook vaak voor bij leerlingen die Nederlands als moedertaal hebben. Hoe ga je er als wiskundeleerkracht mee om en wat ligt binnen je verantwoordelijkheid? Vanuit problemen in onze eigen klaspraktijk zochten we in de literatuur naar meer informatie. Een belangrijk inzicht dat we meekregen is dat je leerlingen niet minder maar juist meer met taal moet laten bezig zijn. Dit kan door rijke contexten aan te bieden, interactie uit te lokken en taalsteun te geven. We zochten uit wat dit kan betekenen voor je klaspraktijk en merkten dat kleine ingrepen al voor een positief effect kunnen zorgen. (pg. 20))

[ Lees meer ]
 

Goniometrie is van alle tijden, zowel binnen als buiten het klaslokaal. Hoewel het onderwerp bij onze lezers goed bekend is, willen we hier enkele accenten leggen bij de leerstof over rechthoekige en willekeurige driehoeken en hun toepassingen, verwante hoeken en periodieke functies. Daarnaast vermelden we enkele boeiende zijsprongen voor sommige leerlingen: exacte berekening van goniometrische getallen met wortelvormen en het optellen van algemene sinusfuncties aan de hand van de optelling van vectoren. (pg. 9))

[ Lees meer ]
 

In dit nummer maak je aan de hand van een model bestaande uit verhard papier en transparant kennis met een tiende-eeuws astrolabium uit Bagdad. In de middeleeuwen was Bagdad een stad waar wiskunde en wetenschappen een hoge bloei kenden. Een astrolabium is een vlakke schijf die de sterrenhemel voorstelt en die je kunt draaien ten opzichte van de horizon van een waarnemer. Het bij dit nummer gevoegde model is berekend voor de breedtegraad van Vlaanderen. Om te begrijpen wat het astrolabium is en hoe je ermee kunt werken, is ruimtelijk inzicht vereist. Aan de hand van enkele concrete opdrachten leren de leerlingen het astrolabium gebruiken. De projectiemethode die gebruikt is om de sterrenhemel op het astrolabium af te beelden heet stereografische projectie. Een eigenschap van stereografische projectie is dat cirkels op de hemelsfeer afgebeeld worden als cirkels op het astrolabium. (pg. 16))

[ Lees meer ]
 
Bespreking van