Inloggen

Uitwiskeling - Jaargang 32 - 2016

Verschenen nummers

Jaaroverzicht

In fysica wordt voortdurend gebruik gemaakt van technieken uit wiskunde en omgekeerd worden in de les wiskunde vaak voorbeelden en toepassingen uit fysica bestudeerd. Leerlingen maken de transfer tussen de twee vakken niet automatisch en hebben daar vaak moeite mee. Deze loep biedt inspiratie om de samenhang tussen beide vakken te tonen. We gaan dieper in op begrippen en benamingen die in de les fysica gebruikt worden met betrekking tot vectoren. Ook het scalair en vectorieel product komen aan bod in fysische contexten. Verder zoeken we methoden om het zwaartepunt van vlakke figuren te bepalen. Dat doen we zowel experimenteel als theoretisch, wat een mooie toepassing van integraalrekening oplevert. We behandelen ook een modelleeropdracht waarbij we een antwoord zoeken op een aantal vragen met betrekking tot de regen. Hoe blijf je zo droog mogelijk wanneer je zonder paraplu door een regenbui moet? Tot slot gaan we dieper in op de wiskunde bij de slingerbeweging. We helpen je op weg om zelf een ‘pendulum wave’ te maken, een golf van slingers met verschillende lengte. (pg. 20))

[ Lees meer ]
 

Een wiskundeleraar wil in de eerste plaats dat zijn leerlingen wiskunde leren. Het leren is iets wat de leerling zelf moet doen. Dit gebeurt in de klas, maar ook daarbuiten. Naast activerende werkvormen voor in de klas, zochten we naar manieren om meer impact te hebben op het leren buiten de klas. Zowel in de klas als daarbuiten kan dit online of offline gebeuren. De auteurs geven een persoonlijk verslag van hoe zij dit proberen te realiseren. (pg. 7))

[ Lees meer ]
 

In deze loep komen allerlei problemen aan bod waarvan de uitkomst ons op een of andere manier verrast. Het niveau van de onderwerpen bestrijkt zowel de eerste, tweede als derde graad. Bij sommige problemen blijkt het eerste antwoord dat in je opkomt bij nader inzien totaal fout te zijn. Enkel met een kritische blik op het eindantwoord of een goed onderbouwde, wiskundige redenering kun je anderen (en jezelf!) overtuigen dat het eindresultaat anders is. Sommige problemen sluiten rechtstreeks aan bij de leerstofonderdelen. Zo past een teken-activiteit met vierhoeken in de eerste graad. Een kansspel dat op een verrassende manier leidt tot een fractaal, kan zowel bij rijen als bij kansrekening aan bod komen. Een onverwacht limietgeval hoort dan weer thuis bij de regel van de l'Hospital in de derde graad. Andere problemen in deze loep staan eerder los van de leerstof wiskunde in het secundair onderwijs, maar zijn daarom niet minder interessant. Zoals de reden waarom het lijkt alsof je vrienden op Facebook gemiddeld meer vrienden hebben dan jezelf, en waarom het verkeer soms vlotter kan doorrijden door een welbepaalde straat te verwijderen. In deze loep kunnen de stukjes onafhankelijk van elkaar gelezen worden. (pg. 24))

[ Lees meer ]
 

Bijna alle foto's en films worden tegenwoordig digitaal gemaakt en opgeslagen. We maken kennis met de wiskunde achter een digitale foto. Een digitale foto is een rooster met getallen. Wat is de samenhang met grijswaarden? Welke transformaties kunnen we uitvoeren om het contrast bij te regelen, een 'negatieve' foto te bekomen ...? Wat betekenen de histogrammen die op het schermpje van digitale fototoestellen verschijnen? We tellen ook beelden op en geven voorbeelden van visuele cryptografie: hoe kun je een geheime boodschap of beeld in een ander beeld verstoppen en het er weer uithalen? We gaan ook in op het comprimeren van beeldbestanden. Dit laatste onderwerp gaat wiskundig een stuk verder, daarom beperken we ons tot 'fractale compressie'. (pg. 6))

[ Lees meer ]
 
Bespreking van