Algebra

Logica in algebra

[les] Formule uitspreken Hoe spreek je [latex](x+y)^2[/latex] uit? Als je zegt 'het kwadraat van [latex]x[/latex] plus [latex]y[/latex]’, dan kan dit ook als [latex]x^2+y[/latex] begrepen worden. Als je zegt '[latex]x[/latex] plus [latex]y[/latex] in het kwadraat', dan kan dit ook als [latex]x+y^2[/latex] begrepen worden. Bedenk een manier om het uit te spreken zodat elke verwarring uitgesloten is.

[ Lees meer ]

De (max, +)-algebra, Gerardo Soto y Koelemeijer

Zebra-reeks nr. 53, Epsilon, Amsterdam, 68 pp., ISBN 978-90-5041-172-1. Het boekje in de Zebra-reeks heb ik in één teug leeggelezen. En daarna heb ik onmiddellijk een rekenblad geopend om na te rekenen of alles wel klopte. Je doet dit wellicht ook als je dit boekje in handen krijgt, tenminste indien je van onconventionele en onverwachte

[ Lees meer ]

Verrijkende activiteiten in de eerste graad

De eerste graad is voor de leerlingen wennen aan een nieuwe wereld. De leerlingen komen uit verschillende lagere scholen en het niveau, zowel voor taal als voor wiskunde, is soms heel uiteenlopend. Daarom is het voor veel leerlingen nodig dat een deel van de leerstof van de lagere school wordt hernomen, terwijl anderen vooral uitkijken naar het 'nieuwe' dat ze op de grote school komen leren. Veel leerkrachten van de eerste graad zijn op zoek gegaan naar verrijkende activiteiten om al hun leerlingen de boeiende wereld van de wiskunde en haar toepassingen te laten ontdekken. In deze loep laten we enkele van deze collega’s aan het woord.

[ Lees meer ]

Veeltermvergelijkingen van vroeger tot nu

We brengen leerlingen van de 21ste eeuw in contact met hoe Egyptenaren in de oudheid, Arabieren in de middeleeuwen en Italianen in de renaissance vergelijkingen oplosten. Egyptenaren losten eerstegraadsvergelijkingen op met een gok die ze aanpasten door te verdubbelen en te halveren. Ook de middeleeuwse ‘regula falsi’ start met één of twee gissingen, waarmee de oplossing berekend wordt. De recepten van Al-Khwarizmi om tweedegraadsvergelijkingen op te lossen, werden met ingenieuze meetkundige puzzels verklaard. De geschiedenis van de derde- en hogeregraadsvergelijkingen in de renaissance en erna vormt een ware thriller. Met deze mooie stukjes historische wiskunde hopen we dat de leerlingen ons vak meer als een boeiend menselijk avontuur dan als een afgewerkt product ervaren. Bovendien gaan ze de efficiëntie van de huidige wiskundige oplossingsmethodes beter appreciëren als ze geconfronteerd worden met de moeilijkheden van vroeger, toen men het zonder negatieve getallen en zonder onze handige algebraïsche schrijfwijze moest doen.

[ Lees meer ]

Groepentheorie

Bibwijzerbijdrage: 'Groepentheorie' uit Uitwiskeling jaargang 30, nummer 4. Geschreven door Tristan Kuijpers en C. Lybaert.

[ Lees meer ]