Deelbaarheid

40 jaar Uitwiskeling, een terugblik (1)

In UW 6/2 werd in het Spinnenweb een inzending van Guibert Sys gepubliceerd over de deelbaarheid van een getal door 7 en 13. Voor jongere lezers: destijds waren deelbaarheidscriteria gewone leerstof. Er waren immers nauwelijks digitale hulpmiddelen voor handen om hiermee een deelbaarheidstest uit te voeren. De inzending van Guibert Sys kreeg meteen een vervolg

[ Lees meer ]

Tensegrities

Tensegrities zijn een soort ruimtelijke constructies met staafjes en touwtjes die elkaar door trek- en spankrachten in evenwicht houden. In deze loep behandelen we bepaalde klassen van tensegrities die eenvoudig wiskundig kunnen worden nagerekend. Naast heel wat ruimtelijk inzicht volstaat hiervoor de wiskunde uit het vierde jaar. Met behulp van een 3D- designprogramma kunnen leerlingen daarna ook creatief aan de slag en hun eigen ontwerp maken. Als kers op de taart kunnen ze deze objecten tot slot nog knutselen.

[ Lees meer ]

Priemgetallen

Priemgetallen zijn de bouwstenen van de natuurlijke getallen. Priemgetallen hebben mooie eigenschappen. Sommige daarvan zijn al van in de tijd van Euclides gekend en bewezen, andere zijn nog open problemen en wachten nog op een bewijs of een tegenvoorbeeld. We focussen op eigenschappen en vermoedens die bij de leerlingen verwondering wekken. Daarnaast gaan we ook op zoek naar priemtests. Bij dit alles komen wel wat bewijsvormen kijken.

[ Lees meer ]

Goochelen in de wiskundeles

Een goocheltruc trekt altijd de aandacht. "Hé, hoe is dat mogelijk?" In deze loep beschrijven we een vijftiental goocheltrucs die de leerlingen met wiskunde kunnen verklaren. Er zit goochelmateriaal in voor alle graden. Een greep uit de wiskundige onderwerpen waar de trucs op gebaseerd zijn: rekenen met letters, deelbaarheid, rijen, kansverdelingen... en vooral leren schematiseren, modelleren en problemen oplossen.

[ Lees meer ]

Naar de abstracte algebra?

Voor de meerderheid van de leerlingen is de hedendaagse aanpak (van concreet naar abstract, minder geformaliseerd, gebruik van ICT, ...) zinvoller en toegankelijker dan de wiskundelessen van enkele decennia geleden. Maar een beperkte groep sterke leerlingen weet een stuk deductief opgebouwde leerstof op een relatief hoog abstractieniveau best te appreciëren. Hoe kunnen we deze leerlingen in de derde graad in contact brengen met een aantal typisch wiskundige aspecten: deductieve opbouw, abstractie, doorgedreven gebruik van symbolische notatie, algebraïsche structuren?

[ Lees meer ]