georiënteerde oppervlakte

Determinanten

In veel studierichtingen zijn de determinanten terug van weggeweest. Deze loep speelt in op deze nieuwe leerplansituatie. We belichten twee sporen die leiden naar het determinantbegrip: de oplosbaarheid van stelsels en de inverteerbaarheid van matrices. Het eerste spoor is bedoeld voor wie het kort wil houden. Het tweede spoor biedt meer diepgang en gaat ook in op eigenschappen, de regel van Cramer en eigenwaarden. Tot slot is er een paragraaf voor wie zich afvraagt hoe je determinanten meetkundig kunt voorstellen en of je eigenschappen van determinanten meetkundig kunt verklaren.

[ Lees meer ]

Guy Noël, Intérieur et aire d’un polygone

Losanges 40 (2018), 21-33 Als we spreken over de oppervlakte van een veelhoek, is het duidelijk wat we bedoelen: de oppervlakte van de binnenkant van deze veelhoek. Als de veelhoek ‘gekruist’ is, met andere woorden als de zijden van de veelhoek elkaar ook mogen snijden, is het dan nog zo eenvoudig om te bepalen wat de binnenkant is? Teken in GeoGebra een stervijfhoek [latex]ABCDE[/latex] (figuur 1) en wat merk je: enkel de driehoekige vlakdelen zijn gekleurd, de centrale vijfhoek niet. Hoort dit deel niet bij de binnenkant? Dit hangt af van hoe je de binnenkant definieert. [caption id="attachment_10672" align="aligncenter" width="410"] Figuur…

[ Lees meer ]