koordenvierhoek

De stelling van Ptolemaios, een ideale context om te leren bewijzen

1. Bewijzen in de wiskunde Bewijzen vormen een belangrijk aspect van het wiskundeonderwijs. Zeker niet alleen het leren en reproduceren van bewijzen, maar ook en vooral het zelf opbouwen van redeneringen en zoeken naar bewijzen. De stelling van Ptolemaios is een klassieke stelling over koordenvierhoeken. Het bewijs steunt op gelijkvormige driehoeken en omtrekshoeken. Het boeiende

[ Lees meer ]

Het ABCD van de koordenvierhoeken

Voor een willekeurige driehoek geldt dat de drie hoekpunten op een cirkel liggen, de zogenaamde omcirkel of de omgeschreven cirkel. In dit artikel onderzoeken we of dit ook geldt voor vierhoeken. We gaan na of de hoekpunten van een willekeurige vierhoek altijd op een omcirkel liggen. Als er een omcirkel bestaat, noemen we de vierhoek een koordenvierhoek of een cyclische vierhoek. Als we drie van de vier hoekpunten van een vierhoek nemen, liggen die altijd op een omcirkel. De drie punten zijn immers niet collineair. Opdat de vierhoek een koordenvierhoek zou zijn, moet ook het vierde hoekpunt op deze omcirkel…

[ Lees meer ]