Logica

Logische poorten in de huiskamer en onder de motorkap

In de loep van Uitwiskeling 37/3 over Logica in de tweede graad werden er praktische voorbeelden gegeven van elementaire logische poorten. De AND-poort illustreerden we met de haagschaar, die alleen werkt als er twee schakelaars tegelijkertijd worden ingedrukt, eentje met de linkerhand en eentje met de rechterhand. Zowel de linker- als de rechterhand gebruiken, is

[ Lees meer ]

Logica in algebra

[les] Formule uitspreken Hoe spreek je [latex](x+y)^2[/latex] uit? Als je zegt 'het kwadraat van [latex]x[/latex] plus [latex]y[/latex]’, dan kan dit ook als [latex]x^2+y[/latex] begrepen worden. Als je zegt '[latex]x[/latex] plus [latex]y[/latex] in het kwadraat', dan kan dit ook als [latex]x+y^2[/latex] begrepen worden. Bedenk een manier om het uit te spreken zodat elke verwarring uitgesloten is. Voor welke koppels [latex](x,y)\in \mathbb{R}^2[/latex] maakt het allemaal niets uit? [/les] Ik kwam op het idee van deze oefening bij het lezen van een kort fragmentje uit een artikel in Euclides (Kindt, 2020). Deze opgave had niet misstaan in onze loep over 'gewoon mooie oefeningen'.…

[ Lees meer ]

Vergeten begrippen (6): Modus tollens

Het begrip dat hier opgerakeld wordt, is afkomstig uit de afdeling logica. Sinds de laatste leerplanhervormingen, begin deze eeuw, is de logica in het secundair onderwijs op de achtergrond geraakt. Het nadenken over logische verwantschappen tussen uitspraken (enkele pijl of dubbele pijl?) en over bewijstechnieken (contrapositie, bewijs uit het ongerijmde ...) werd jarenlang als minder belangrijk beschouwd. Hoewel, bij de nieuwe leerplannen voor de eerste graad, die in september 2019 in voege gegaan zijn, is deze component terecht weer meer in de kijker gezet. Ook het onderwijs van de logica is onderhevig aan tendensen. De logica kan axiomatisch aangebracht worden…

[ Lees meer ]

Verrassende wiskunde

In deze loep komen allerlei problemen aan bod waarvan de uitkomst ons op een of andere manier verrast. Het niveau van de onderwerpen bestrijkt zowel de eerste, tweede als derde graad. Bij sommige problemen blijkt het eerste antwoord dat in je opkomt bij nader inzien totaal fout te zijn. Enkel met een kritische blik op het eindantwoord of een goed onderbouwde, wiskundige redenering kun je anderen (en jezelf!) overtuigen dat het eindresultaat anders is. Sommige problemen sluiten rechtstreeks aan bij de leerstofonderdelen. Zo past een teken-activiteit met vierhoeken in de eerste graad. Een kansspel dat op een verrassende manier leidt tot een fractaal, kan zowel bij rijen als bij kansrekening aan bod komen. Een onverwacht limietgeval hoort dan weer thuis bij de regel van de l'Hospital in de derde graad. Andere problemen in deze loep staan eerder los van de leerstof wiskunde in het secundair onderwijs, maar zijn daarom niet minder interessant. Zoals de reden waarom het lijkt alsof je vrienden op Facebook gemiddeld meer vrienden hebben dan jezelf, en waarom het verkeer soms vlotter kan doorrijden door een welbepaalde straat te verwijderen. In deze loep kunnen de stukjes onafhankelijk van elkaar gelezen worden.

[ Lees meer ]

Logic

Bibwijzerbijdrage: 'Logic' uit Uitwiskeling jaargang 29, nummer 3. Geschreven door Jean Paul Van Bendegem.

[ Lees meer ]

Priemgetallen

Priemgetallen zijn de bouwstenen van de natuurlijke getallen. Priemgetallen hebben mooie eigenschappen. Sommige daarvan zijn al van in de tijd van Euclides gekend en bewezen, andere zijn nog open problemen en wachten nog op een bewijs of een tegenvoorbeeld. We focussen op eigenschappen en vermoedens die bij de leerlingen verwondering wekken. Daarnaast gaan we ook op zoek naar priemtests. Bij dit alles komen wel wat bewijsvormen kijken.

[ Lees meer ]

Logica

Wiskundig denken is niet te herleiden tot het toepassen van formele logica. Toch kan een kennismaking met logica een steun zijn om bepaalde denkfouten binnen en buiten de wiskunde te begrijpen en te vermijden. Deze loep bestaat uit twee modules. De eerste legt de nadruk op logisch redeneren buiten de wiskunde en kan een keuzeonderwerp zijn in een richting met weinig uren wiskunde. De tweede module is een vervolg op de eerste en is bedoeld voor leerlingen van de derde graad die een zwaarder wiskundepakket kozen. In deze module worden begrippen uit de logica toegepast op wiskundige redeneringen en redeneerfouten, op basis van leerstof uit de tweede en derde graad.

[ Lees meer ]