Archief doorzoeken

Een blokje kaas verdelen

Een tijdje geleden kocht ik een doosje Franse kaas van een bekend merk. Het doosje bevat een blok kaas van 200 gram en vermeldt dat dit acht porties van 25 gram zijn. Er verscheen in de winkel onwillekeurig een glimlach op mijn gezicht omdat ik meteen zag hoe je volgens de drie symmetrievlakken kon snijden om aan acht gelijke porties te komen. Grote verrassing toen ik thuis het doosje open deed en op de bodem ervan een uitgewerkt plan zag om op een propere manier de kaas in acht te verdelen! Er was goed over nagedacht want de stukken zijn…

[ Read More ]

Twee verwante extremumproblemen en een merkwaardige veralgemening

Bij extremumproblemen is het soms interessant om een getal of een voorwaarde aan de opgave te veranderen en op te merken dat de conclusie hierdoor volledig wijzigt. Zo kun je bijvoorbeeld een rechthoekige kippenren afspannen met een gegeven aantal meter kippengaas. In het vrije veld is de kippenren met de maximale oppervlakte vierkant. Als je de kippenren tegen een muur bouwt, heeft ze de vorm van een dubbelvierkant. En als je ze tegen een hoekmuur aanbouwt, dan vind je misschien weer een heel ander resultaat. Ook bij het fileprobleem merk ik iets dergelijks op. Als je je afvraagt hoe

[ Read More ]

Oprichting Platform Wiskunde Vlaanderen en een Prijsvraag

Ter gelegenheid van pi-dag presenteren wiskundebloggers Paul Levrie en Rudi Penne enkele pi-weetjes én vertellen ze je alles over het Platform Wiskunde Vlaanderen, dat vandaag gelanceerd wordt. Wisten jullie dat … … het vandaag π-dag is? Waarom? Omdat in de Amerikaanse schrijfwijze de datum 14 maart genoteerd wordt als 3/14 en 3,14 is een benadering voor het getal π.

[ Read More ]

Worstelen met een integraal

J. Jansen Euclides 96/2, 30-32 Hoe zou je deze integraal berekenen: [latex]I=\int \limits_{0}^{\frac{\pi}{2}} \frac{\sin{x}}{\sin{x}+\cos{x}}\mathrm{d}x?[/latex] Je kunt de grafische rekenmachine inschakelen. Je vindt 0,7853982 (figuur 1), wat je misschien herkent als (een benadering van) [latex]\frac{\pi}{4}[/latex]. [caption id="attachment_27726" align="aligncenter" width="314"] Figuur 1 Met de grafische rekenmachine[/caption]   Om waterdicht te bewijzen dat de integraal exact gelijk is aan [latex]\frac{\pi}{4}[/latex], ga je op zoek naar een primitieve functie. Partiële integratie

[ Read More ]

Roteren in 4D

Elk jaar werken mijn collega Pedro Tytgat en ik een project uit in onze achtuursklassen. We werken dan met een gemengde groep van vijfde- en zesdejaars rond een bepaald thema. Het eerste project in deze reeks waren de speelplaatstekeningen waarover we al schreven in het Spinnenweb van Uitwiskeling 29/1. Enkele jaren geleden werkten we rond dimensies,

[ Read More ]

Geometry Puzzles in Felt Tip

Catriona Agg [caption id="attachment_29388" align="aligncenter" width="403"] Figuur 1 Een screenshot van een Vastgemaakte Tweet van Catriona Agg[/caption]   Ja, beste lezer, je ziet het goed, dit heb ik ontdekt op Twitter. Meer zelfs, hoewel ze een boek heeft uitgebracht, raadt Catriona Agg aan om haar meetkundeproblemen op Twitter te zoeken (helemaal gratis). Agg is een wiskundelerares die in 2018 begonnen is met het tweeten van zelf verzonnen meetkundepuzzels. Ze tekent die heel mooi in viltstift. Het doet denken aan Math with Bad Drawings van Ben Orlin, waarover we al schreven in

[ Read More ]

Raaklijnen door de oorsprong

Inleiding In de derde graad is het een klassiek vraagstuk om de vergelijking op te stellen van de raaklijn aan de grafiek van een gegeven functie in een gegeven punt. Een iets moeilijkere variant is het zoeken naar een raaklijn aan de grafiek van een gegeven functie die evenwijdig is met een gegeven rechte zoals in dit voorbeeld. De raaklijn [latex]t[/latex] aan de grafiek van de functie [latex]f[/latex] met [latex]f(x)=-x^2+2x[/latex] is evenwijdig met de rechte [latex]r \leftrightarrow y=3x+1[/latex]. Bepaal de coördinaat van het raakpunt. [caption id="attachment_27791"

[ Read More ]

Van één veranderlijke naar twee veranderlijken: afgeleiden en integralen

Situering Ik vind het interessant om vanuit de leerstof van het secundair onderwijs de stap te zetten naar enkele begrippen van de hogere wiskunde zoals die aan de universiteit wordt gedoceerd in richtingen wiskunde, natuurkunde en  ingenieurswetenschappen. 'De stap zetten naar...' is iets anders dan de leerlingen onderdompelen in een stukje academische wiskunde. In mijn bespreking van het SOHO-boekje Groepentheorie (Kuijpers & Lybaert, 2014) in Uitwiskeling 30/4 formuleerde ik het als volgt: Het  probleem  van  deze  kloof  tussen de wiskunde in het secundair en de academische

[ Read More ]